Coefficient Subrings of Certain Local Rings with Prime-power Characteristic
نویسنده
چکیده
If R is a local ring whose radical J(R) is nilpotent and R/J(R) is a commutative field which is algebraic over GF(p), then R has at least one subring S such that S w*=,S,, where each S, is isomorphic to a Galois ring and S/J(S) is naturally isomorphic to R/J(R). Such subrings ofR are mutually isomorphic, but not necessarily conjugate in R.
منابع مشابه
Ideals Contained in Subrings
Lewin has proved that if S is a ring and R a subring of finite index in S, then R contains an ideal of S which is also of finite index; and Feigelstock has recently shown that other classes of subrings must contain ideals belonging to the same class. We provide some extensions of these results, and apply them to prime rings. In the final section, we investigate finiteness of rings having only f...
متن کاملGroup rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملFactorial and Noetherian Subrings of Power Series Rings
Let F be a field. We show that certain subrings contained between the polynomial ring F [X] = F [X1, · · · , Xn] and the power series ring F [X][[Y ]] = F [X1, · · · , Xn][[Y ]] have Weierstrass Factorization, which allows us to deduce both unique factorization and the Noetherian property. These intermediate subrings are obtained from elements of F [X][[Y ]] by bounding their total X-degree abo...
متن کاملOn the Structure and Ideal Theory of Complete Local Rings
Introduction. The concept of a local ring was introduced by Krull [7](1), who defined such a ring as a commutative ring 9î in which every ideal has a finite basis and in which the set m of all non-units is an ideal, necessarily maximal. He proved that the intersection of all the powers of m is the zero ideal. If the powers of m are introduced as a system of neighborhoods of zero, then 3Î thus b...
متن کامل